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INTRODUCTION

An explosive growth of online news has taken place. Users are inundated with thousands 

of news articles, only some of which are interesting. A system to filter out uninteresting articles 

would aid users that need to read and analyze many articles daily, such as financial analysts and

government officials. 

The most obvious approach for reducing the amount of information overload is to learn 

keywords of interest for a user (Carreira et al., 2004). Although filtering articles based on 

keywords removes many irrelevant articles, there are still many uninteresting articles that are 

highly relevant to keyword searches. A relevant article may not be interesting for various 

reasons, such as the article’s age or if it discusses an event that the user has already read about in 

other articles. 

Although it has been shown that collaborative filtering can aid in personalized 

recommendation systems (Wang et al., 2006), a large number of users is needed. In a limited 

user environment, such as a small group of analysts monitoring news events, collaborative 

filtering would be ineffective. 

The definition of what makes an article interesting – or its “interestingness” – varies from 

user to user and is continually evolving, calling for adaptable user personalization. Furthermore, 

due to the nature of news, most articles are uninteresting since many are similar or report events 



outside the scope of an individual’s concerns. There has been much work in news 

recommendation systems, but none have yet addressed the question of what makes an article 

interesting.

BACKGROUND

Working in a limited user environment, the only available information is the article's 

content and its metadata, disallowing the use of collaborative filtering for article 

recommendation. Some systems perform clustering or classification based on the article's 

content, computing such values as TF-IDF weights for tokens (Radev et al., 2003). Corso (2005)

ranks articles and new sources based on several properties, such as mutual reinforcement and 

freshness, in an online method. However, Corso does not address the problem of personalized 

news filtering, but rather the identification of interesting articles for the general public.

Macskassy and Provost (2001) measure the interestingness of an article as the correlation 

between the article’s content and real-life events that occur after the article’s publication. Using 

these indicators, they can predict future interesting articles. Unfortunately, these indicators are 

often domain specific and are difficult to collect for the online processing of articles.

The online recommendation of articles is closely related to the adaptive filtering task in 

TREC (Text Retrieval Conference), which is the online identification of articles that are most 

relevant to a set of topics. The task is different from identifying interesting articles for a user 

because an article that is relevant to a topic may not necessarily be interesting. However, 

relevancy to a set of topics of interest is often correlated to interestingness. The report by 

Robertson and Soboroff (2002) summarizes the results of the last run of the TREC filtering task. 

Methods explored in TREC11 include a Rocchio variant, a second-order perceptron, a SVM, a 



Winnow classifier, language modelling, probabilistic models of terms and relevancy, and the 

Okapi Basic Search System.

The recommendation of articles is a complex document classification problem. However, 

most classification methods have been used to bin documents into topics, which is a different 

problem from binning documents by their interestingness. Traditional classification has focused 

on whether or not an article is relevant to a topic of interest, such as the work done in TREC. 

Typical methods have included the Rocchio (1971) algorithm, language models (Peng et al., 

2003), and latent Dirichlet allocation (Newman et al., 2006; Steyvers, 2006). Despite the 

research done in topic relevancy classification, it is insufficient for addressing the problem of 

interestingness. There are many reasons why an article is interesting besides being relevant to 

topics of interests. For example, an article that discusses content that a user has never seen may 

be interesting but would be undetectable using traditional IR techniques. For example, the events

of the September 11 attacks had never been seen before but were clearly interesting. 

Furthermore, redundant yet relevant articles would not be interesting as they do not provide the 

user any new information. However, traditional IR techniques are still useful as a first step 

towards identifying interesting articles.

MAIN FOCUS

The problem of recommending articles to a specific user can be addressed by answering what 

makes an article interesting to the user. A possible classification pipeline is envisioned in Figure 

1. Articles are processed in a streaming fashion, like the document processing done in the 

adaptive filter task in TREC. Articles are introduced to the system in chronological order of their 

publication date. The article classification pipeline consists of four phases. In the first phase, a 

set of feature extractors generate a set of feature scores for an article. Each feature extractor 



addresses an aspect of interestingness, such as topic relevancy. Then a classifier generates an 

overall classification score, which is then thresholded by an adaptive thresholder to generate a 

binary classification, indicating the interestingness of the article to the user. In the final phase, 

the user examines the article and provides his own binary classification of interestingness (i.e., 

label). This feedback is used to update the feature extractors, the classifier, and the thresholder. 

The process continues similarly for the next document in the pipeline.

Interestingness Issues

The “interestingness” of an article varies from user to user and is often complex and 

difficult to measure. Consequently, several issues arise:

1. There are a variety of reasons why an article is interesting. There is no single attribute of 

a document that definitively identifies interesting articles. As a result, using only

traditional IR techniques for document classification is not sufficient (Pon et al, 2007). 

2. Some interestingness features are often contradictory. For example, an interesting article 

should be relevant to a user’s known interests but should yield new information. On the 

other hand, random events may be new and unique but may not necessarily be of interest 

to all users.

Figure 1. Article classification pipeline.



3. The breaking news of an important event is difficult to discriminate from the breaking 

news of an unimportant one. 

4. Because what makes an article interesting varies from user to user, the ideal set of 

features for a user can not be determined until the system is in use by a user. Useless 

features will be present in the classification process, which will degrade the performance 

of a classifier (Forman, 2004), especially its accuracy with classifying on early articles. 

5. The definition of the interestingness may change for a user over time. Consequently, an

online learner must be able to adapt to the changing utility of features.

6. User-feedback must be continually incorporated in the classification process so that any 

machine learning algorithm can learn efficiently over time what makes an article 

interesting for a user. A classifier must be incrementally accurate, updateable, and robust 

against noisy and potentially useless features.

7. Users are often interested in a multitude of topics that may be drastically different from 

one another. For example, a user may be interested in news about an election and 

football. To represent a user using a single profile may not be sufficient while multiple 

profiles may be costly to maintain (Pon et al., 2007b).

8. A successful news recommendation system must give accurate recommendations with 

very little training. Users will deem a system useless if it cannot provide useful 

recommendations almost immediately. 

Possible Document Features for Interestingness

There is no single feature that definitively identifies interesting articles. Pon et al. (2007) 

describes a set of possible aspects regarding interestingness:



1. Topic Relevancy: Although an article that is relevant to a topic of interest may not 

necessarily be interesting, relevancy to such topics is often a prerequisite for 

interestingness for a certain class of users. Traditional IR techniques can be used for this 

purpose.

2. Uniqueness: Articles that yield little new information compared to articles already seen 

may not be interesting. In contrast, an article that first breaks a news event may be 

interesting. Articles that describe a rare event may also be interesting. For example, 

Rattigan and Jensen (2005) claim that interesting articles may be produced by rare 

collaborations among authors. Methods for outlier detection include using mixture 

models (Eskin, 2000), generating solving sets (Angiulli et al., 2005) and using k-d trees 

(Chaudhary et al., 2002). 

3. Source Reputation: An article’s interestingness can be estimated given its source’s past 

history in producing interesting articles. Articles from a source known to produce 

interesting articles tend to be more interesting than articles from less-reputable sources. 

4. Writing Style: Most work using the writing style of articles has mainly been for 

authorship attribution (Koppel et al., 2006). Instead of author attribution, the same 

writing style features can be used to infer interestingness. For example, the vocabulary 

richness (Tweedie & Baayen, 1998) of an article should suit the user’s understanding of 

the topic (e.g., a layman versus an expert). Also writing style features may help with 

author attribution, which can be used for source reputation, where attribution is 

unavailable.

5. Freshness: Articles about recent events tend to be labeled as more interesting than 

articles about older events. Also articles about the same event are published around the 



time the event has occurred. This may also be the case for interesting events, and 

consequently interesting articles.

6. Subjectivity and Polarity: The sentiment of an article may also contribute to a user’s 

definition of interestingness. For example, “bad news” may be more interesting than 

“good news” (i.e., the polarity of the article). Or, subjective articles may be more 

interesting than objective articles. Polarity identification has been done with a dictionary 

approach (Mishne, 2005). Others have looked at subjectivity labeling, using various NLP 

techniques (Wiebe et al., 2004).

The above list is not an exhaustive list of interestingness features. There is currently 

ongoing work on the identification and the measurement of new features that correlate with 

interestingness. 

Ensembles

Because of the complexity of the problem of recommending articles, a solution to this 

problem could leverage multiple existing techniques to build a better recommendation system. In 

other problems, this approach has worked well, such as in webpage duplication (Henzinger, 

2006).

One ensemble approach to ranking items, such as articles, is to combine multiple ranking 

functions through probabilistic latent query analysis (Yan & Hauptmann, 2006). Another 

approach uses a weighted majority algorithm to aggregate expert advice from an ensemble of 

classifiers to address concept drift in real-time ranking (Beckier & Arias, 2007). A simpler 

ensemble approach is taken by Pon et al. (2007a). Different techniques, which are relevant to 

determining the “interestingness” of an article, are combined together as individual features for a 

naïve Bayesian classifier. Pon et al. show that this achieves a better “interestingness” judgment. 



However, naïve Bayesian classifiers assume that features are independent. As discussed earlier, 

“interestingness” is complex and allows for the possibility of conditionally dependent features. 

For example, an article may be interesting if it is unique but relevant to topics of interest. The 

search for an updateable yet efficient and complete classifier for “interestingness” remains open.

Additionally, because the definition of interestingness varies from user to user (Pon et al., 

2007a) and may even change over time, it is not possible to use traditional offline feature 

selection algorithms, such as the ones described by Guyon and Eliseeff (2003), to identify which 

features are important before deploying the system. So, all features are included for 

classification. The ideal approach to dealing with this problem is by embedding a feature 

selection algorithm within an updateable classifier. Some approaches have included using 

Winnow (Carvalho & Cohen 2006), but lack the generality for handling features with different 

semantic meanings. Utgoff et al.’s (1997) incremental decision tree algorithm addresses this 

problem but is not appropriate for an online environment due to its growing storage 

requirements. A different approach taken by Nurmi and Floreen (2005) identify and remove 

redundant features using the properties of time series data. However, this approach is not 

applicable to articles as articles are not necessarily dependent upon the article that immediately 

precedes it in the document stream.

FUTURE TRENDS

With the advent of blogs that specialize in niche news markets, readers can expect to see 

an explosive growth on the availability of information where only a small fraction may be of 

interest to them. In contrast to traditional news sources, such as CNN, blogs focus on specific 

topics that may be of interest to only a handful of users as opposed to the general public. This 

phenomenon is often referred to as the long tail market phenomenon (Anderson, 2007). Instead 



of building news filters that cater to the mass public, future research will focus more on 

personalized news recommendation. Personalization research is also present in other media, as 

evident in the Netflix Prize competition (2007) and the related KDD Cup 2007 competition 

(Bennett et al., 2007), in which teams compete to improve the accuracy of movie 

recommendations.

Traditional corpora, such as the ones used in TREC, are ill equipped to address the 

problems in personalized news recommendation. Current corpora address the traditional 

problems of topic relevancy and do not address the problem of interestingness. Furthermore, 

such corpora are not user-focused. At best, such corpora label articles that a general audience 

would find to be interesting as opposed to a specific user. Even the Yahoo! news articles used by 

Pon et al. (2007) address the problem of identifying interesting articles to a large community of 

users instead of a specific user. Further research in personalized news recommendation will need 

to be evaluated on a large test data collection that has been collected using many individual 

users. Such data can be collected by tracking individual user behavior on the Internet or on news 

bulletin boards, such as Digg (2007). 

CONCLUSION

The online recommendation of interesting articles for a specific user is a complex 

problem, having to draw from many areas of machine learning, such as feature selection,

classification, and anomaly detection. There is no single technique that will be able to address 

the problem of interestingness by itself. An ensemble of multiple techniques is one possible 

solution to addressing this problem. Because of the growth of research in recommendation 

systems, more user-focused test collections should be made available for system evaluation and 

comparison.
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KEY TERMS AND THEIR DEFINITIONS

Online news recommendation: The problem of recommending news articles to a specific user 

by machine learning algorithms. Such algorithms must provide a recommendation for an article 

when it arrives in a document stream in real-time. Once a decision on an article is made, the 

decision cannot be changed.

Interestingness: How interesting the referred item is to a specific user. This measure is complex 

and subjective, varying from user to user.

Online feature selection: The problem of selecting a subset of useful features from a set of 

given features for online classification by machine learning algorithms. As instances are 

classified sequentially, the appropriate set of features is selected for classifying each instance. 

Ensemble: The combination of multiple techniques to achieve better results for a common task.

User-focused recommendation: Recommendations made for a specific user or a niche 

community. 

General audience recommendation: Recommendations made for the mass public, usually 

related to what is popular.

Conditionally dependent features: Features whose values are dependent upon the values of 

other features. 


